Talpa levantis

Selçuk, Ahmet Yesari, Kaya, Alaettin & Kefelioğlu, Haluk, 2025, Morphological, linear, and geometric morphometric differences (skull, mandible, and pelvis) among subspecies of Talpa levantis (Eulipotyphla: Talpidae) with molecular divergence (mtDNA and nuclear DNA), Turkish Journal of Zoology 49 (2), pp. 103-119 : 111-114

publication ID

https://doi.org/10.55730/1300-0179.3216

persistent identifier

https://treatment.plazi.org/id/1A0487F9-A47D-FFD7-B61F-FF6CFD9483D5

treatment provided by

Felipe

scientific name

Talpa levantis
status

 

3.3. Phylogenetic analysis of Talpa levantis View in CoL subspecies We amplified the mitochondrial DNA cyt b gene (1140 bp) from T. levantis levantis (10 samples), T. levantis dogramacii (8 samples), and T. levantis transcaucasica (4 samples). No stop-codon insertions or deletions were observed in the alignment. The sequences for samples 112-A (Artvin locality) and 118-A (Artvin locality) of T. levantis transcaucasica obtained in this study and the FN640570 View Materials sequence (Çam Geçidi Artvin locality) from GenBank ( Table S4) were found to yield the same sequence. For sequences of the subspecies of Talpa levantis , it was further determined that the respective sequences of 113-A (Bolu locality) and KP717336 View Materials (Zonguldak locality), 107-A (Samsun locality) and MN868447 View Materials (Samsun locality), and 132-A (Samsun locality) and MN868451 View Materials (Samsun locality) yielded the same sequence ( Figure 1 View Figure 1 ; Table 1).

To elucidate the phylogenetic relationships among the Talpa levantis subspecies, analysis was performed for all deposited sequences of 1140 bp in length ( Table S4). The cyt b phylogenetic trees of 1140 bp constructed using the BI and ML methods displayed relatively similar topology ( Figure 3 View Figure 3 ; Figure S10 View Figure S ). Phylogenetic analysis revealed clear separation (high bootstrap and posterior probability) among the subspecies of Talpa levantis distributed in the northern region of Anatolia. The mean K2P distance between T. levantis dogramacii and T. levantis levantis was 4.1% (net distance between group means: 2.5%), between T. levantis transcaucasica and T. levantis levantis was 7.0% (5.3%), between T. levantis transcaucasica and T. levantis dogramacii was 6.2% (4.6%), and between T. levantis levantis + T. levantis dogramacii and T. levantis transcaucasica was 6.9% (5.0%).

T. levantis levantis was divided into two haplogroups supported by high bootstrap and posterior probability values in the phylogenetic trees ( Figure 3 View Figure 3 ; Figure S10 View Figure S ). The K2P distance between Haplogroup 1 and Haplogroup 2 for T. levantis levantis was 2.78%. In Haplogroup 2 for T. levantis levantis , the Giresun ( MN868440 View Materials –41) and Trabzon (125A, 126A, 120A, MN868439 View Materials ) samples, geographically close to each other ( Figure 1 View Figure 1 ), were clustered together, whereas Haplogroup 1 exhibited geographical heterogeneity ( Figure 3 View Figure 3 ; Figure S10 View Figure S ). For T. levantis dogramacii , distributed in a relatively narrow region, the K2P distance value between Haplogroup 1 and Haplogroup 2 was 2.22%. The Zonguldak samples ( KP717339 View Materials , KP717343 View Materials , KP717340 View Materials , KP717336 View Materials , KP717338 View Materials , 123-A), situated at the intersection of the distribution limits of T. levantis dogramacii and T. levantis levantis , exhibited a distribution pattern encompassing both T. levantis dogramacii and T. levantis levantis . The K2P distance value between Haplogroup 1 and Haplogroup 2 for T. levantis transcaucasica was 2.60%. The samples from Türkiye and the samples from Armenia + Russia were clustered into different haplogroups ( Figure 3 View Figure 3 ; Figure S10 View Figure S ). For T. levantis dogramacii , Tajima’s D (D = 0.74219, p> 0.10) and Fu’s FS (FS = 3.088, p> 0.1) yielded positive but nonsignificant values. For T. levantis levantis , Tajima’s D (D = –0.72837, p> 0.10) and Fu’s FS (FS = –8.637, p> 0.10) yielded negative but nonsignificant values. T. levantis levantis , situated in the central region of the range limits for subspecies of Talpa levantis , exhibited a higher proportion of nucleotide diversity when compared to the other two subspecies.

BRCA-2 sequences of 774 bp in length were obtained from 22 specimens in the current study ( Table 1). When combined with previously available BRCA-2 sequences of these Talpa subspecies, the dataset contained 39 T. levantis sequences ( Table S5). T. levantis transcaucasica differed from the other subspecies based on the BRCA-2 sequences (656 bp), with a relatively low bootstrap value (65%) but a high posterior probability value (0.99) in the ML and BI trees. No clear phylogenetic distinction could be made between T. levantis levantis and T. levantis dogramacii ( Figures S11 View Figure S and S 12 View Figure S ).

3.4. Geometric morphometric results versus cyt b and BRCA-2

Mahalanobis and Procrustes distances based on geometric morphometry and genetic distances based on cyt b sequences are summarized in Tables 3 and 4. It was determined that T. levantis levantis , T. levantis dogramacii , and T. levantis transcaucasica differ from each other both molecular (cyt b and BRCA-2) and in terms of geometric morphometry (i.e. Mahalanobis distances) ( Figure 4 View Figure4 ; Table 4).

For Procrustes distances, the subspecies showed statistically significant differences in the mandible. The two zoogeographically close subspecies of T. levantis dogramacii and T. levantis levantis did not differ from each other in the ventral part of the skull ( Figure 1 View Figure 1 ; Table 4). In addition, T. levantis transcaucasica differs in shape (ventral skull and mandible) from the other subspecies ( Table 4).

In the dendrogram obtained based on Euclidean distance and an averaging method according to CVA scores, T. levantis dogramacii and T. levantis levantis were grouped together. T. levantis transcaucasica constituted the most distant clade ( Figure 4 View Figure4 ).

It was determined that the K2P genetic distance between T. levantis levantis and T. levantis dogramacii , which are zoogeographically close to each other, was lower. Similar to the results of genetic distance, geometric morphometric analysis determined lower Mahalanobis distances for the ventral part of the skull, the mandible, and the lateral part of the hemicoxae between T. levantis levantis and T. levantis dogramacii ( Table 4).

From CVA and the phylogenetic trees based on cyt b and BRCA-2, T. levantis transcaucasica was found to be significantly different from T. levantis levantis and T. levantis dogramacii . This was supported by high posterior probability values in the BI trees, collectively forming a well-supported monophyletic group ( Figure 4 View Figure4 ; Figure S13 View Figure S ). Similarly, the phylogenetic relationship based on cyt b between T. levantis levantis and T. levantis dogramacii was resolved in both the BI and ML trees ( Figure 4 View Figure4 ; Figure S13 View Figure S ). The phylogenetic relationship based on BRCA-2 between T. levantis levantis and T. levantis dogramacii was partially resolved ( Figure 4 View Figure4 ; Figure S13 View Figure S ). Short gene sequences can cause phylogenetic signals to be lost. Therefore, the use of larger datasets with more nucleotides and different nuclear genes may reveal more accurate phylogenetic relationships ( Rosenberg and Kumar, 2003; Cunha et al., 2009).

Kingdom

Animalia

Phylum

Chordata

Class

Mammalia

Order

Soricomorpha

Family

Talpidae

Genus

Talpa

Darwin Core Archive (for parent article) View in SIBiLS Plain XML RDF