Richtersius ingemari, Vecchi & Godziek & Kristensen & Piemontese & Calhim & Stec, 2025
publication ID |
https://doi.org/10.5852/ejt.2025.981.2823 |
publication LSID |
lsid:zoobank.org:pub:6BACE4E9-942A-4A2E-B85C-ADB62E8BB9AB |
DOI |
https://doi.org/10.5281/zenodo.15121820 |
persistent identifier |
https://treatment.plazi.org/id/03FA87C1-9362-FFD6-865C-F94554F2FEF5 |
treatment provided by |
Plazi |
scientific name |
Richtersius ingemari |
status |
sp. nov. |
Richtersius ingemari sp. nov.
urn:lsid:zoobank.org:act:8D3E6F1C-BCFA-46A6-9F5C-173C0EB70EF2
Figs 8–13 View Fig View Fig View Fig View Fig View Fig View Fig ; Tables 6–8
Adorybiotus coronifer View in CoL – Westh & Ramløv 1991. — Ramløv & Westh 1992. — Westh & Kristensen 1992.
Adorybiotus (Richtersius) coronifer View in CoL – Ramløv & Westh 2001.
Richtersius coronifer View in CoL – Jönsson & Guidetti 2001. — Jönsson & Rebecchi 2002. — Ivarsson & Jönsson 2004. — Jönsson et al. 2005. — Jönsson 2007. — Jönsson & Schill 2007. — Dunn et al. 2008. — Faurby et al. 2008. — Hindborg Mortensen et al. 2010. — Nilsson et al. 2010. — Persson et al. 2011. — Halberg et al. 2012; 2013. — Czernekova & Jönsson 2016. — Czerneková et al. 2017; 2018. — Vecchi et al. 2018. — Guidetti et al. 2019. — Kamilari et al. 2019. — Pedersen et al. 2020; 2021.
Richtersius coronifer View in CoL P3 – Rebecchi et al. 2003.
Richtersius coronifer View in CoL P4 – Rebecchi et al. 2003.
Richtersius View in CoL Sweden – Guidetti et al. 2016: figs 1–2.
Richtersius View in CoL Northern Italy 2 – Guidetti et al. 2016.
Richtersius sp. 4 – Stec et al. 2020b.
Richtersius cf. coronifer View in CoL – Hagelbäck & Jönsson 2023.
Etymology
This species is named after Prof. Ingemar Jönsson of Kristianstad University, Sweden, in recognition of his efforts in studying the physiological adaptations of tardigrades to extreme conditions, utilizing this species as a model organism.
Type material
Holotype
SWEDEN • Öland Island ; 56°32′18.2″ N, 16°27′45.3″ E; 46 m a.s.l.; Oct. 2006; R.M. Kristensen leg.; moss on rock; ISEA-PAS, slide SE.002.5. GoogleMaps
Paratypes
SWEDEN • 69 specs; same data as for holotype; ISEA PAS, slides SE.002.1 to SE.002.7, SEM stubs TAR.2.01, TAR.2.02 GoogleMaps • 44 eggs; same data as for holotype; ISEA PAS, slides SE.002.13, SE.002.14, SEM stubs TAR.2.01, TAR.2.02 GoogleMaps • 22 specs; same data as for holotype; MUC, slides NHMD-1732287, NHMD-1732288 GoogleMaps • 41 eggs; same data as for holotype; MUC , slides NHMD-1732289 to NHMD-1732291 GoogleMaps .
Description
Animals (measurements in Tables 6–7; Supp. files 3, 4)
Body is bright yellow; all specimens became transparent after the fixation in Hoyer’s medium ( Fig. 8 View Fig ). Eyes were visible in all of the animals (excluding hatchlings) mounted in Hoyer’s medium. Body and leg cuticle is without granulation in all life stages and with pores present only in hatchlings ( Figs 8B View Fig , 9 View Fig ). Hatchlings are similar in appearance to adults, except for a smaller body size and roundish pores (1.5–3.1 µm in diameter) with usually jagged edges, visible under PCM, scattered randomly throughout the body cuticle, with a mean pore density of 5 (range 4–7) per 2500 µm 2 of the dorsal cuticle ( Fig. 9 View Fig ).
Claws are slender, primary branches with distinct accessory points ( Fig.10 View Fig ) and an internal system of septa as described for Richtersius coronifer s. lat. by Lisi et al. (2020). The claw common tract index has an average value between 57% and 61% across all four leg pairs, meaning that the basal portion of the claw is usually longer than half the total length of the primary branch. Lunulae are large, with a crown of long, numerous and densely arranged spikes ( Fig. 10 View Fig ). All the lunulae are trapezoidal ( Fig. 10 View Fig ). Double muscle attachments in legs I–III and horseshoe structures in legs IV are visible in PCM, whereas cuticular bars are absent ( Fig. 10 View Fig ).
Mouth is antero-ventral. The buccal apparatus is of the Richtersius type ( Fig. 11 View Fig ). The oral cavity is followed by a system of large apophyses that form a buccal crown ( Fig. 11A–B View Fig ). Anteriorly, the system consists of dorso-lateral and ventro-lateral triangular apophyses ( Fig. 11A View Fig ). The dorsal and ventral apophyses are composed of anteriorly positioned large cuticular hooks, followed by longitudinal crests ( Fig. 11B View Fig ). The hook in the ventral apophyses is smaller than the dorsal hook ( Fig. 11B View Fig ). The wall of the buccal tube exhibits a variable thickness ( Fig. 11A View Fig ), but the internal diameter of the buccal tube is almost uniformly narrow ( Fig. 11A View Fig ). From the mouth opening to the stylet support insertion point, the thickness of the buccal tube wall increases only slightly, while below this point the evident posterior thickness is clearly visible ( Fig. 11A View Fig ). The pharynx is spherical, with bilobed apophyses, three anterior cuticular spikes (typically only two are visible in any given plane, Fig. 11A View Fig ) and two granular macroplacoids (2<1). The first and second macroplacoids have a faint constriction positioned centrally and subterminally, respectively ( Fig. 11C View Fig ). The oral cavity armature is faintly visible under PCM, with only the second band of teeth visible mainly in the larger specimens ( Fig. 11B View Fig ). Under PCM, the second band of teeth is visible as several irregular rows of densely packed and faint dark dots ( Fig. 11B View Fig ). The discontinuous third band of teeth is situated between the second band of teeth and the opening of the buccal tube and is divided into a dorsal and a ventral portion, both in the form of a single large tooth resembling a beak.
Eggs (measurements in Table 8 View Table 8 ; Supp. file 3)
Large, roundish, yellow, laid freely. The surface between processes is smooth but with refracting dots faintly visible only under PCM, but difficult to observe because of the amount of debris that is typically attached to the egg surface ( Figs 12–13 View Fig View Fig ). Processes in the shape of elongated, thin, cones with a ragged surface caused by small granules visible both in LM and SEM ( Figs 12 View Fig , 13B View Fig ). The processes are sometimes bifurcated ( Figs 12E–F View Fig , 13B View Fig ). A ring of small pores visible only with SEM is present around each process ( Fig. 13C View Fig ). The processes are hollow inside ( Fig. 13D View Fig ). Terminal discs or other structures absent.
Reproduction
Thelytokous parthenogenesis, chromosome number 2n = 12 ( Rebecchi et al. 2003; Stec et al. 2020b). Automictic parthenogenesis has been suggested for this species by Rebecchi et al. (2003) based on the presence of chiasmata in the oocytes.
DNA sequences
– 18S: AY582121, KT778706 View Materials -7 ( Guidetti et al. 2016), MH681761 View Materials -2 ( Stec et al. 2020b)
– 28S: GQ849048 View Materials , KT778697 View Materials -8 ( Guidetti et al. 2016), MH681758 View Materials -9 ( Stec et al. 2020b)
– COI: EU251385 View Materials , EU244606 View Materials , EU251383 View Materials -4, MH676054 View Materials -5 ( Stec et al. 2020b), PP986907-8 (this study)
– ITS2: MH681764 View Materials -5 ( Stec et al. 2020b)
Distribution
Locus typicus: Möckelmossen, Öland Island, Sweden (56°32′18.2″ N, 16°27′45.3″ E). Moss on tock (sample SE.002 in this study).
Möckelmossen, Öland Island, Sweden (56°31.732′ N, 16°29.474′ E). Moss on rock(sample C 2353 in Guidetti et al. 2016; sample P 4 in Rebecchi et al. 2003; sample C3585-S 6 in Vecchi et al. 2018). This population has been extensively used in studies on cytology, physiology, and ecology under the name of Richtersius coronifer .
Lago di Teleccio, Torino, Italy (45°28′55″ N, 7°22′22″ E; 1830 m a.s.l.). Moss (sample IT. 120 in Stec et al. 2020b).
Sasso del Corvo, Modena, Italy (44°12.774′ N, 10°31.974′ E, 1280 m a.s.l.). Moss on rock (sample C 3226 in Guidetti et al. 2016; sample P 3 in Rebecchi et al. 2003).
Kościeliska Valley, Tatrzański National Park, Poland (49°14′22″ N, 19°51′46″ E; 1083 m a.s.l.). Moss (sample PL. 246 in Stec et al. 2020b).
Differential diagnosis
Richtersius ingemari sp. nov. differs from:
Richtersius coronifer by having smaller eggs (bare diameter 114–137 µm in R. ingemari sp. nov. vs 173– 233 µm in R. coronifer ) and by having a lower pore density in the newborns (PD 4–7 in R. ingemari vs 60–88 in R. coronifer ).
Richtersius ziemowiti by having a lower pore density in the newborns (PD 4–7 in R. ingemari sp. nov. vs 20–24 in R. ziemowiti ).
Richtersius mazepi by having bigger eggs (bare diameter 114–137 µm in R. ingemari sp. nov. vs 77– 91 µm in R. mazepi ), by the absence of a crown of thickenings distributed around the bases of the egg processes (present in R. mazepi ), by the different shape of the egg processes (conical spikes in R. ingemari vs wide dome-shaped proximal portion and an elongated slender distal portion in R. mazepi ), by having a lower pore density in the newborns (PD 4–7 in R. ingemari vs 26–36 in R. mazepi ), and by having a higher claw IV anterior cct (51–69 % in R ingemari vs 32–44 % in R. mazepi ).
Richtersius tertius by having a smaller first macroplacoid (pt 9–13 in R. ingemari sp. nov. vs 14–20 in R. tertius ).
Richtersius nicolai sp. nov. by having a higher pore density in the newborns (PD 4–7 in R. ingemari sp. nov. vs 9–11 in R. nicolai ), and by the reproductive mode (parthenogenesis in R. ingemari vs gonochorism in R. nicolai ).
ISEA |
Poland, Krakow, Polish Academy of Sciences, Institute of Systematic Zoology |
PAS |
PAS |
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Phylum |
|
Class |
|
Order |
|
Family |
|
Genus |
Richtersius ingemari
Vecchi, Matteo, Godziek, Jakub, Kristensen, Reinhardt M., Piemontese, Lucia, Calhim, Sara & Stec, Daniel 2025 |
Richtersius cf. coronifer
Hagelback P. & Jonsson K. I. 2023: 171 |
Richtersius sp. 4
Stec D. & Krzywanski L. & Arakawa K. & Michalczyk L. 2020: 171 |
Richtersius
Guidetti R. & Rebecchi L. & Bertolani R. & Jonsson K. I. & Kristensen R. M. & Cesari M. 2016: 171 |
Richtersius
Guidetti R. & Rebecchi L. & Bertolani R. & Jonsson K. I. & Kristensen R. M. & Cesari M. 2016: 171 |
Richtersius coronifer
Rebecchi L. & Rossi V. & Altiero T. & Bertolani R. & Menozzi P. 2003: 171 |
Richtersius coronifer
Rebecchi L. & Rossi V. & Altiero T. & Bertolani R. & Menozzi P. 2003: 171 |
Adorybiotus (Richtersius) coronifer
Ramlov H. & Westh P. 2001: 170 |
Richtersius coronifer
Pedersen B. H. & Malte H. & Ramlov H. & Finster K. 2021: 171 |
Pedersen B. H. & Malte H. & Ramlov H. & Finster K. 2020: 171 |
Guidetti R. & Vecchi M. & Ferrari A. & Newton I. L. & Cesari M. & Rebecchi L. 2019: 171 |
Kamilari M. & Jorgensen A. & Schiott M. & Mobjerg N. 2019: 171 |
Czernekova M. & Jonsson K. I. & Chajec L. & Student S. & Poprawa I.. 2018: 171 |
Vecchi M. & Newton I. G. & Cesari M. & Rebecchi L. & Guidetti R. 2018: 171 |
Czernekova M. & Jonsson K. I. & Chajec L. & Student S. & Poprawa I.. 2017: 171 |
Halberg K. A. & Larsen K. W. & Jorgensen A. & Ramlov H. & Mobjerg N. 2013: 171 |
Halberg K. A. & Larsen K. W. & Jorgensen A. & Ramlov H. & Mobjerg N. 2012: 171 |
Persson D. K. & Halberg K. A. & Jorgensen A. & Ricci C. & Mobjerg N. & Kristensen R. M. 2011: 170 |
Hindborg Mortensen L. & Lynge Nilsson L. & Nyby C. & Vilstrup A. 2010: 170 |
Nilsson E. J. C. & Ingemar Jonsson K. & Pallon J. 2010: 170 |
Dunn C. W. & Hejnol A. & Matus D. Q. & Pang K. & Browne W. E. & Smith S. A. & Seaver E. & Rouse G. W. & Edgecombe G. D. & Sorensen M. V. & Haddock S. H. D. & Schmidt-Rhaesa A. & Okusu A. & Kristensen R. M. & Wheeler W. C. & Martindale M. Q. & Giribet G. 2008: 170 |
Faurby S. & Jonsson K. I. & Rebecchi L. & Funch P. 2008: 170 |
Jonsson K. I. 2007: 170 |
Jonsson K. I. & Schill R. O. 2007: 170 |
Czernekova M. & Jonsson K. I. 2006: 171 |
Jonsson K. I. & Harms-Ringdahl M. & Torudd J. 2005: 170 |
Ivarsson H. & Jonsson K. I. 2004: 170 |
Jonsson K. I. & Rebecchi L. 2002: 170 |
Jonsson K. I. & Guidetti R. 2001: 170 |
Adorybiotus coronifer
Ramlov H. & Westh P. 1992: 170 |
Westh P. & Kristensen R. M. 1992: 170 |
Westh P. & Ramlov H. 1991: 170 |