Clytiidae Cockerell, 1911
publication ID |
https://doi.org/10.11646/zootaxa.5577.1.1 |
publication LSID |
lsid:zoobank.org:pub:A5924C49-3957-4A8A-BD8E-D0FE741D6B1F |
persistent identifier |
https://treatment.plazi.org/id/846787B2-FFB3-F226-FF76-FA20FCE00DB4 |
treatment provided by |
Plazi |
scientific name |
Clytiidae Cockerell, 1911 |
status |
|
Family Clytiidae Cockerell, 1911
Clytia gracilis (M. Sars, 1850) —(10º22'N, 16º22'W), 41–55 m; (10º40'N, 16º44'W), 65 m; (10º49'N, 16º39'W), 42 m, [ Vervoort 1959: 313, as L. (Phialidium) pelagica ].—(10º31'12"– 10º30'19"N, 17º12'34"– 17º12'32"W) , 300–305 m; (10º18'25"– 10º19'20"N, 16º08'47"– 16º08'47"W) GoogleMaps , 24–25 m; (10º19'30"– 10º20'15"N, 16º10'27"– 16º10'59"W), 24 m; (10º21'13"– 10º21'51"N, 16º10'17"– 16º10'56"W), 20–21 m; (10º21'59"– 10º22'36"N, 16º13'23"– 16º14'03"W), 21–24 m; (10º22'44"– 10º23'22"N, 16º15'37"– 16º16'18"W), 29 m; (10º30'53"– 10º31'39"N, 16º31'33"– 16º32'02"W), 56–58 m; (11º22'11"– 11º21'55"N, 17º02'30"– 17º01'54"W), 35–37 m; (10º41'43"– 10º43'12"N, 16º48'37"– 16º48'55"W), 107 m (this study).
Clytia hemisphaerica ( Linnaeus, 1767) View in CoL —(10º22'N, 16º22'W), 41–55 m; (10º49'N, 16º39'W), 42 m, ( Vervoort 1959: 312, as C. johnstoni View in CoL ).—(10º18'25"– 10º19'20"N, 16º08'47"– 16º08'47"W), 24–25 m (this study).
Clytia linearis ( Thornely, 1900) View in CoL ⁑ —(10º18'25"– 10º19'20"N, 16º08'47"– 16º08'47"W), 24–25 m; (10º21'13"– 10º21'51"N, 16º10'17"– 16º10'56"W), 20–21 m; (10º22'44"– 10º23'22"N, 16º15'37"– 16º16'18"W), 29 m (this study).
Clytia paulensis ( Vanhöffen, 1910) View in CoL —(11º28'N, 17º11'W) 4751 m ( Gili et al. 1989: 106).—(10º18'25"– 10º19'20"N, 16º08'47"– 16º08'47"W), 24–25 m; (10º21'59"– 10º22'36"N, 16º13'23"– 16º14'03"W), 21–24 m; (10º22'44"– 10º23'22"N, 16º15'37"– 16º16'18"W), 29 m; (10º30'53"– 10º31'39"N, 16º31'33"– 16º32'02"W), 56–58 m; (11º22'11"– 11º21'55"N, 17º02'30"– 17º01'54"W), 35–37 m (this study).
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.