Colletotrichum fructicola Prihast., L. Cai & K. D. Hyde

Gomdola, Deecksha, Jeewon, Rajesh, McKenzie, Eric H. C., Jayawardena, Ruvishika S., Al-Otibi, Fatimah, Tang, Xia, Wang, Yong, Hyde, Kevin D. & Fu, Li, 2025, Phylogenetic diversity of Colletotrichum species (Sordariomycetes, Glomerellales, Glomerellaceae) associated with plant diseases in Thailand, MycoKeys 119, pp. 137-195 : 137-195

publication ID

https://doi.org/10.3897/mycokeys.119.152323

DOI

https://doi.org/10.5281/zenodo.15801931

persistent identifier

https://treatment.plazi.org/id/04E751BE-D2AB-529A-A537-A3B64F10ED19

treatment provided by

MycoKeys by Pensoft

scientific name

Colletotrichum fructicola Prihast., L. Cai & K. D. Hyde
status

 

Colletotrichum fructicola Prihast., L. Cai & K. D. Hyde View in CoL , in Prihastuti et al. Fungal Diversity 39: 96 (2009)

Figs 2 View Figure 2 , 9 View Figure 9

Description.

Associated with leaf spots, blight, and blotches. Leaf spots circular or irregular, pale brown to brown, surrounded with a dark brown margin. Leaf blight brown, surrounded with a dark brown margin. Leaf blotches reddish brown to dark brown. Sexual morph on substrate: Ascomata 75–150 × 80–150 µm (x ̄ = 95 × 98 µm, n = 5), solitary, semi-immersed, globose to subglobose, brown, ostiolate. Setae not observed. Sexual morph on PDA: Ascomata 100–200 × 100–190 µm (x ̄ = 131 × 123 µm, n = 5), solitary or aggregated, semi-immersed or superficial, globose to subglobose, black. Setae not observed. Peridium 8–38 µm thick (x ̄ = 19.1 µm, n = 10), composed of 3–4 layers of thick-walled pseudoparenchymatous cells of textura angularis. Asci 55–70 × 8–11 µm (x ̄ = 63 × 9.5 µm, n = 10), operculate, unitunicate, cylindrical to clavate or cymbiform, 6–8 - spored. Ascospores 13–23.5 × 4–6.5 µm (x ̄ = 17.9 × 5.1 µm, n = 25; L / W ratio = 3.5), uniseriate or biseriate, hyaline, subellipsoidal or oblong, reniform to falcate, somewhat fusiform, slightly curved, smooth-walled, guttulate, aseptate, mostly with obtuse or acute ends. Asexual morph on substrate: Conidiomata 80–150 × 60–140 µm (x ̄ = 100 × 90 µm, n = 5), solitary, semi-immersed, globose to subglobose, brown, producing creamy to orange conidial mass. Setae not observed. Asexual morph on PDA: Conidiomata 200–800 µm diam. (x ̄ = 350 µm, n = 10), semi-immersed, scattered or aggregated, globose to subglobose, exuding creamy to orange conidial mass. Setae not observed. Conidiophores formed directly from mycelium, hyaline, cylindrical, branched, or unbranched. Conidiogenous cells 6.5–22 × 2–4 µm (x ̄ = 12.1 × 3 µm, n = 10), hyaline, cylindrical, or ampulliform, straight or flexuous, tapering towards the apex. Conidia 12–18 × 4.5–5.5 µm (x ̄ = 15.4 × 5 µm, n = 25; L / W ratio = 3.1), hyaline, cylindrical to ovoid, smooth-walled, guttulate, aseptate, with rounded ends. Chlamydospores 6–7 × 6.5–8 µm (x ̄ = 6.3 × 7.2 µm, n = 5), globose to subglobose, pale brown. Appressoria Not observed.

Culture characteristics.

Colonies on PDA reaching approximately 80 mm diam. after 7 d of incubation at 25 ° C; mycelium initially white, becoming dark grey at the center when aged, elevation flat or raised, aerial and dense, with an entire margin.

Specimens examined.

Thailand • Chiang Mai Province, Omkoi District, Yiang Piang Subdistrict , associated with leaf spots of Castanea sp. ( Fagaceae ), 16 Oct 2019, D. Gomdola DG 367 - L 2 ( MFLU 25-0012 ), living culture MFLUCC 25-0013 ; DG 367 (L 2) - A ( MFLU 25-0013 ), living culture MFLUCC 25-0014 ; DG 367 (L 2) - B ( MFLU 25-0014 ), living culture MFLUCC 25-0015 ; Thailand • Chiang Mai Province, Doi Lo District , associated with leaf blight of Hedychium sp. ( Zingiberaceae ), 15 Oct 2019, D. Gomdola DG 327 ( MFLU 25-0015 ), living culture MFLUCC 25-0016 ; Thailand • Chiang Rai Province, around the vicinity of Central Plaza , associated with leaf blotches of Rhododendron sp. ( Ericaceae ), 11 Jul 2019, D. Gomdola DG 03.1 ( MFLU 25-0016 ), living culture MFLUCC 25-0017 .

GenBank accession numbers.

MFLUCC 25-0013 ; ITS = PV 263300; GAPDH = PV 290906; CHS 1 = PV 274257; ACT = PV 297883; and TUB 2 = PV 295625; MFLUCC 25-0014 ; ITS = PV 263301; GAPDH = PV 290907; CHS 1 = PV 274258; ACT = PV 297884; and H 3 = PV 549703; MFLUCC 25-0015 ; ITS = PV 263302; GAPDH = PV 290908; CHS 1 = PV 274259; ACT = PV 297885; and H 3 = PV 400146; MFLUCC 25-0016 ; ITS = PV 263303; GAPDH = PV 290909; CHS 1 = PV 274260; and H 3 = PV 400147; and CAM = PV 299290; and MFLUCC 25-0017 ; ITS = PV 263304; GAPDH = PV 290910; CHS 1 = PV 274261; ACT = PV 297886; TUB 2 = PV 295626; H 3 = PV 400148; and CAM = PV 299291.

Known hosts, distributions, and lifestyles

(listed chronologically). Pathogenic on plants; Leaf spots of Ficus edulis in Germany and Limonium spp. in Israel ( Weir et al. 2012); Pyrus pyrifolia ( Zhang et al. 2015), Dalbergia hupeana ( Zhou et al. 2022), Myrica rubra ( Li et al. 2022 a), Ziziphus mauritiana ( Shu et al. 2021), Zamia furfuracea ( Manawasinghe et al. 2022), Liriodendron chinense × tulipifera ( Wan et al. 2022), Magnolia wufengensis ( Yin et al. 2022), Illicium verum ( Zhao et al. 2022), Camellia sinensis , Curcuma phaeocaulis , Ilex chinensis , Ligustrum lucidum and Zingiber officinale ( Zhang et al. 2023 a), and Celosia cristata , Cymbidium sinense and Dendrobium nobile in China ( Zhang et al. 2023 b); Malus domestica in Uruguay ( Casanova et al. 2017; Alaniz et al. 2019); and Nephrolepis cordifolia ( Seifollahi et al. 2023) and Rhizophora apiculata in Thailand ( Norphanphoun and Hyde 2023).

Leaf blotch of Aesculus chinensis in China ( Sun et al. 2020) and brown blight of Camellia sinensis in Taiwan ( Lin et al. 2023 a).

Shot-hole on leaves of Prunus sibirica in China ( Han et al. 2023).

Brown sunken cladode spots of Nopalea cochenillifera in Brazil ( Conforto et al. 2017).

Anthracnose of Dioscorea spp. in Nigeria ( Weir et al. 2012); Pyrus bretschneideri , P. communis and P. pyrifolia in China ( Weir et al. 2012; Li et al. 2013; Fu et al. 2019) and Pyrus pyrifolia × P. communis in Korea ( Choi and Park 2021); Citrus spp. in China ( Huang et al. 2013; Hu et al. 2019) and Iran ( Arzanlou et al. 2015; Taheri et al. 2016); Hylocerous undatus and Ziziphus sp. in Thailand ( Udayanga et al. 2013); Mangifera indica in Brazil ( Lima et al. 2013, 2015), India ( Sharma et al. 2013), Korea ( Joa et al. 2016), China ( Li et al. 2019), Mexico ( Tovar-Pedraza et al. 2020), Egypt ( Ismail and El-Ganainy 2022) and Taiwan ( Wu et al. 2020; Lin et al. 2023 b); Rubus glaucus in Colombia ( Afanador-Kafuri et al. 2014); Gleditsia caspica in Iran ( Arzanlou et al. 2015); Prunus persica in USA ( Hu et al. 2015), Korea ( Lee et al. 2020) and China ( Tan et al. 2022); Camellia sinensis in China ( Liu et al. 2015; Wang et al. 2016 a; Lu et al. 2018; Shi et al. 2018) and Indonesia ( Weir et al. 2012; Liu et al. 2015); Corchorus capsularis ( Niu et al. 2016 a, 2016 b) and Fragaria × ananassa ( Han et al. 2016; Jayawardena et al. 2016 b; He et al. 2019; Chen et al. 2020; Jian et al. 2021); Aucuba japonica in China ( Li et al. 2016) and Korea ( Hassan et al. 2023); Annona spp. in Brazil ( Costa et al. 2016, 2019); Capsicum spp. in China ( Liu et al. 2016; Diao et al. 2017), Thailand ( de Silva et al. 2019) and Malaysia ( Noor and Zakaria 2018); Nicotiana tabacum in China ( Wang et al. 2016 b); Carica papaya in India ( Saini et al. 2016), Mexico ( Marquez-Zequera et al. 2018), Costa Rica ( Ruiz-Campos et al. 2022) and Brazil ( Vieira et al. 2022); Fatsia japonica in china ( Shi et al. 2017); Malus domestica in Iran ( Arzanlou et al. 2015) and Korea ( Kim et al. 2018, 2020); Anacardium occidentale , A. othonianum and A. humile in Brazil ( Veloso et al. 2018, 2021); Juglans regia ( Wang et al. 2018; Li et al. 2023 a) and Pouteria campechiana in China ( Yang et al. 2021); Diospyros kaki in Brazil ( Carraro et al. 2019), Philippines ( Evallo et al. 2022) and China ( Zhang et al. 2023 d); Hevea brasiliensis in China ( Cao et al. 2019 a) and Brazil ( Santos de Oliveira et al. 2020); Coffea arabica in China ( Cao et al. 2019 b) and Puerto Rico ( Serrato-Diaz et al. 2020); Salvia greggii in Italy ( Guarnaccia et al. 2019); Vitis labruscana and V. vinifera in Korea ( Lim et al. 2020); Manihot esculenta in China ( Liu et al. 2018) and Brazil ( Bragança et al. 2016; Santos de Oliveira et al. 2020); Dendrobium officinale in China ( Ma et al. 2019); Cattleya spp. and Phalaenopsis sp. in Brazil ( Silva-Cabral et al. 2019); Areca catechu ( Cao et al. 2020), Peucedanum praeruptorum ( Ma et al. 2020), Crinum asiaticum ( Qing et al. 2020), Camellia oleifera ( Wang et al. 2020) and Paris polyphylla var. chinensis in China ( Zhou et al. 2020); Ceanothus thyrsiflorus , Hydrangea paniculata , Cyclamen persicum and Liquidambar styraciflua in Italy ( Guarnaccia et al. 2021); Persea americana in Colombia ( Gañán et al. 2015), Israel ( Sharma et al. 2017), Mexico ( Fuentes-Aragón et al. 2018), New Zealand ( Hofer et al. 2021) and Thailand ( Armand and Jayawardena 2024); Allium cepa in Brazil ( Henrique Lopes et al. 2021); Musa spp. ( Huang et al. 2021 a), Eichhornia crassipes ( Huang et al. 2021 b) and Eriobotrya japonica in China ( Kuang et al. 2021); Camellia sinensis in Taiwan ( Lin et al. 2021); Eucalyptus spp. in South Africa ( Mangwende et al. 2021); Amomum villosum ( Song et al. 2021), Rubus corchorifolius ( Wu et al. 2021), Camellia chrysantha ( Zhao et al. 2021), Cyclocarya paliurus ( Zheng et al. 2021) and Camellia grijsii (= C. yuhsienensis ) in China ( Chen et al. 2022); Ziziphus jujuba (= Z. mauritiana ) in Taiwan ( Duan and Chen 2022); Atractylodes ovata in Korea ( Hassan et al. 2022); Cunninghamia lanceolata ( He et al. 2022), Prunus salicina ( Huang et al. 2022 a) and Phoebe sheareri in China ( Huang et al. 2022 b); Actinidia spp. in China and Japan ( Huang et al. 2022 c; Poti et al. 2023); Carya illinoinensis ( Chang et al. 2022), Macadamia integrifolia ( Li et al. 2023 b), Luffa cylindrica ( Li et al. 2022 b), Loropetalum chinense ( Qiu et al. 2022), Prunus avium ( Tang et al. 2022), Bletilla striata ( Wang et al. 2022), Brassica parachinensis ( Yu et al. 2022 a), Radermachera sinica ( Yu et al. 2022 b), Arachis hypogaea ( Gong et al. 2023), Osmanthus fragrans ( He et al. 2023; Sui et al. 2024), Averrhoa carambola ( Li and Zhang 2023), Carya cathayensis ( Ma et al. 2023), Tetrapanax papyrifer ( Tang et al. 2023) and Glycine max in China ( Xu et al. 2023).

Fruit rot of Persea americana in Australia ( Weir et al. 2012), Nephelium lappaceum in Puerto Rico ( Serrato-Diaz et al. 2017), and Ziziphus mauritiana in China ( Fan et al. 2022).

Ripe rot of Vitis spp. in Brazil ( Echeverrigaray et al. 2020).

Bitter rot of Malus domestica in China ( Fu et al. 2013), the USA ( Weir et al. 2012; Munir et al. 2016), Brazil ( Weir et al. 2012; Velho et al. 2015, 2018, 2019; Moreira et al. 2019), Uruguay ( Alaniz et al. 2015; Velho et al. 2015), Japan ( Yokosawa et al. 2017), Korea ( Oo et al. 2018; Park et al. 2018), France ( Nodet et al. 2019), and Italy ( Wenneker et al. 2021).

Associated with spathe rot, spadix rot, and leaf spots of Anthurium andraeanum in Sri Lanka ( Vithanage et al. 2021); leaf spots of Castanea sp. , leaf blight of Hedychium sp. , and leaf blotches of Rhododendron sp. in Thailand (this study).

Colletotrichum fructicola was also reported from Fragaria × ananassa in Canada and the USA ( Weir et al. 2012) and Morus alba in China but showed no pathogenicity ( Xue et al. 2019). Furthermore, it was reported to cause diseases on Vernicia montana , Cinnamomum camphora , Paulownia fortunei , and Schima superba in China ( Sui et al. 2024).

Pathogenic on a nematode in China; infects horsehair worms ( Chordodes formosanus ), a parasite of praying mantises ( De Vivo et al. 2021).

Pathogenic on humans; causes Colletotrichum keratitis, a fungal infection of human eyes ( Hung et al. 2020).

Endophytic on Tetragastris panamensis and Theobroma cacao in Panama ( Weir et al. 2012), Cymbopogon citratus and Pennisetum purpureum in Thailand ( Manamgoda et al. 2013), Licania tomentosa in Brazil ( Lisboa et al. 2018), Dendrobium spp. in China ( Ma et al. 2018), Coffea arabica in Thailand ( Numponsak et al. 2018), and Magnolia candolli in China ( De Silva et al. 2021).

Notes.

Our isolates ( MFLUCC 25-0013 , MFLUCC 25-0014 , MFLUCC 25-0015 , MFLUCC 25-0016 , and MFLUCC 25-0017 ) grouped with other strains of Colletotrichum fructicola with 99 % ML and 1.00 PP support (Fig. 2 View Figure 2 ). Colletotrichum fructicola is located in the C. gloeosporioides species complex (Figs 1 View Figure 1 , 2 View Figure 2 ), consistent with findings of Prihastuti et al. (2009), Ma et al. (2018), Norphanphoun and Hyde (2023), and Zhang et al. (2023 b). No intraspecies nucleotide differences were observed between our isolates and the ex-type of C. fructicola ( ICMP 18581 ) across the ITS, GAPDH, CHS 1, ACT, and TUB 2 regions. However, a sequence divergence of 0.7 % (5 / 731 bp) was observed in CAM between our isolate ( MFLUCC 25-0017 ) and C. fructicola ( ICMP 18581 ).

Our isolates morphologically resemble the ex-type of C. fructicola ( ICMP 18581 ), having hyaline, smooth-walled, guttulate, and aseptate conidia and ascospores, with the conidia being cylindrical to ovoid with rounded ends and ascospores being oblong, reniform to falcate with obtuse or acute ends ( Prihastuti et al. 2009). Notably, the ascospore and conidial lengths of our isolates vary slightly with other strains of C. fructicola . However, the L / W ratios of our isolates are similar to those of other C. fructicola strains. The ascospore L / W ratio of our isolates is 3.5, while those from other studies are ICMP 18581 = 3.6 ( Prihastuti et al. 2009), MFLUCC 14-0087 = 3.4 ( Ma et al. 2018), MFLUCC 17-1752 = 3.2 ( Norphanphoun and Hyde 2023), and ZHKUCC 23-0829 = 3.7 ( Zhang et al. 2023 b). The conidial L / W ratio of our isolates is 3.1, while those from other studies are ICMP 18581 = 3.2 ( Prihastuti et al. 2009), MFLUCC 14-0087 = 2.9 ( Ma et al. 2018), and MFLUCC 17-1752 = 2.6 ( Norphanphoun and Hyde 2023).

Based on phylogenetic and morphological species concepts, we identify our isolates as Colletotrichum fructicola . This study represents three new host records for C. fructicola associated with leaf spots of Castanea sp. , leaf blight of Hedychium sp. , and leaf blotches of Rhododendron sp. in Thailand.

MFLUCC

Mae Fah Luang University Culture Collection

ICMP

International Collection of Micro-organisms from Plants

Kingdom

Fungi

Phylum

Ascomycota

Class

Sordariomycetes

Order

Glomerellales

Family

Glomerellaceae

Genus

Colletotrichum

Loc

Colletotrichum fructicola Prihast., L. Cai & K. D. Hyde

Gomdola, Deecksha, Jeewon, Rajesh, McKenzie, Eric H. C., Jayawardena, Ruvishika S., Al-Otibi, Fatimah, Tang, Xia, Wang, Yong, Hyde, Kevin D. & Fu, Li 2025
2025
Loc

Colletotrichum fructicola

Prihast., L. Cai & K. D. Hyde 2009: 96
2009