Bryopharsos uncinatum Bravo & Araújo, 2019

Jaume-Schinkel, Santiago, Kilian, Isabel C., Pazmiño-Palomino, Alex & Mengual, Ximo, 2025, Revision of the genus Bryopharsos Quate, 1996 (Diptera: Psychodidae) with the description of nine new species, European Journal of Taxonomy 1001 (1), pp. 1-51 : 43-46

publication ID

https://doi.org/10.5852/ejt.2025.1001.2951

publication LSID

lsid:zoobank.org:pub:1726F665-E94D-45CD-83DC-3102CE2C1C50

persistent identifier

https://treatment.plazi.org/id/03FB5540-6905-DB28-C55D-FEEF09350464

treatment provided by

Plazi

scientific name

Bryopharsos uncinatum Bravo & Araújo, 2019
status

 

Bryopharsos uncinatum Bravo & Araújo, 2019

Figs 1 View Fig , 24 View Fig

Bryopharsos uncinatum Bravo & Araújo, 2019: 365 View Cited Treatment . Type locality: Brazil, São Paulo, Sete Barras (MZFS).

Diagnosis

Male

Eye bridge with four facet rows ( Fig. 24A View Fig ); wing two times as long as wide; ejaculatory apodeme subcircular in ventral view; gonocoxal apodeme without anterior projection ( Fig. 24B View Fig ); surstyli with one tenaculum ( Fig. 24C View Fig ); aedeagus hook-shaped ( Fig. 24B View Fig ). This species is similar to B. paulistensis with both species presenting only one tenaculum in the surstyli (the other species present 3–7 tenacula), but they can be differentiated by the number of facet rows in the eye bridge (four in B. uncinatum , five in B. paulistensis ) and the spine of the gonocoxal apodeme (absent in B. uncinatum , present in B. paulistensis as rounded projections (referred to as lobes in Bravo & Araújo 2019)).

Female

Unknown.

Material examined

None.

Distribution

Brazil ( Bravo & Araújo 2019) ( Fig. 1 View Fig ).

DNA barcodes

No specimens were available for DNA extraction.

Identification key to the males of Bryopharsos

1. Gonostyli bifurcate .................................................................... B. bifidum Jaume-Schinkel sp. nov. – Gonostyli not bifurcate, digitiform ................................................................................................... 2

2. Surstyli with one tenaculum ( Fig. 13B–C View Fig ) ....................................................................................... 3 – Surstyli with two to seven tenacula ( Figs 2C View Fig , 3A–D View Fig ) ...................................................................... 6

3. Eye bridge with five facet rows (as in Figs 19A View Fig ); gonocoxal lobes with additional enlarged lobes ( Fig. 19B View Fig ); aedeagus blade-like ( Fig. 19B View Fig ); parameres clavate ( Fig. 19B View Fig ) ........................................ ................................................................................................. B. paulistensis Bravo & Araújo, 2019 – Eye bridge with three or four facet rows (as in Fig. 6A View Fig ); other characters variable ......................... 4

4. Eye bridge with three facet rows; gonostyli curved outwards (as in Fig. 13B, D View Fig ); aedeagus digitiform and curved outwards (as in Fig. 13B, D View Fig ) ................................... B. curvum Jaume-Schinkel sp. nov. – Eye bridge with four facet rows ( Fig. 15A View Fig ); gonostyli curved inwards; aedeagus variable ............. 5

5. Aedeagus hook-shaped ( Fig. 24B View Fig ); paramere wide and triangular .................................................... .................................................................................................. B. uncinatum Bravo & Araújo, 2019

– Aedeagus digitiform (as in Figs 15B View Fig , 16A View Fig ); paramere digitiform (as in Figs 15B View Fig , 16A View Fig ) .................. .............................................................................................. B. insperatum Jaume-Schinkel sp. nov.

6. Surstyli with three to seven apical tenacula ( Fig. 2C View Fig ) ...................................................................... 8 – Surstyli with only two apical tenacula ( Figs 5 View Fig , 8C View Fig , 9B View Fig ) ................................................................... 7

7. Aedeagus digitiform, ( Figs 4C View Fig , 5 View Fig ); paramere digitiform, longer than the aedeagus ( Figs 4C View Fig , 5 View Fig ); some specimens present two tenacula on one surstylus and three on the other (as in Figs 4C View Fig , 5 View Fig ) .............. ......................................................................................... B. asymmetricum Jaume-Schinkel sp. nov.

– Aedeagus digitiform with a rounded apex ( Figs 8B View Fig , 9A View Fig ); paramere digitiform, shorter than the aedeagus ( Figs 8B View Fig , 9A View Fig ); specimens always with two tenacula on each of the surstyli ( Figs 8B View Fig , 9A View Fig ) ................................................................................................ B. bitenacula Jaume-Schinkel sp. nov.

8. Surstyli with four to seven apical tenacula ( Fig. 20B View Fig ) ................................................................... 10 – Surstyli with only three apical tenacula ( Fig. 22C View Fig ) .......................................................................... 9

9. Aedeagus digitiform, curved ( Fig. 22B, D View Fig ), longer than paramere; surstyli with apical tenacula closely together ( Fig. 22C View Fig ) ............................................................. B. tetracanthus Jaume-Schinkel sp. nov.

– Aedeagus digitiform, straight ( Fig. 23A View Fig ), shorter than paramere; surstyli with apical tenacula separated, two apically and one basally placed ( Fig. 23B View Fig ) .......................................... B. tritaleum Quate, 1996

10. Eye bridge with four facet rows; aedeagus digitiform, straight, about the same length as paramere ( Fig. 12B View Fig ); surstyli with four tenacula ( Fig. 12C View Fig ); tenacula of equal length ...................................... ..................................................................................................................... B. clavigum Quate, 1996

– Eye bridge with four or five facet rows; aedeagus shape variable; length of aedeagus and paramere variable; surstyli with five to seven tenacula ( Fig. 20B View Fig ); tenacula length variable .........................11

11. Aedeagus digitiform, straight; aedeagus shorter than paramere; eye bridge with five face rows; surstyli with three or four apical tenacula (as in Fig. 17C View Fig ); tenacula of equal length ..................................... .................................................................................................................. B. palpiculum Quate, 1996

– Aedeagus shape variable; length of aedeagus and paramere variable; eye bridge with four facet rows; surstyli with five, six, or seven apical tenacula; tenacula length variable ...................................... 12

12. Aedeagus digitiform ( Fig. 21 View Fig ); paramere strongly curved resembling an inverted ʻJʼ ( Fig. 21 View Fig ); surstyli with seven tenacula ( Fig. 20B View Fig ); tenacula of the same length ............................................................. ............................................................................................. B. septenacula Jaume-Schinkel sp. nov. – Aedeagus digitiform, straight; surstyli with five or six tenacula; tenacula length variable ............ 13

13. Aedeagus digitiform, broader than the base of the paramere ( Fig. 2C View Fig , see also Bravo & Araujo 2019: fig. 29); surstyli with five tenacula ................................................................................................. 15

– Aedeagus digitiform, narrower than the base of the paramere ( Figs 11A View Fig , 14D View Fig ); surstyli with six tenacula ........................................................................................................................................... 14

14. Hypandrium shorter than aedeagal width; epandrium C-shaped ........................................................ ...................................................................................................... B. chuspi Jaume-Schinkel sp. nov.

– Hypandrium longer than aedeagal width; epandrium rectangular and not C-shaped ......................... ................................................................................................... B. gorgona Jaume-Schinkel sp. nov.

15. All five tenacula of the same length ( Fig. 2C View Fig ); ejaculatory apodeme shorter than aedeagus ............. ............................................................................................... B. amazonensis Bravo & Araújo, 2019

– Tenacula of different lengths, four tenacula of equal length and one tenaculum shorter than others ( Fig. 3C View Fig ); ejaculatory apodeme about the same length as the aedeagus ............................................. ............................................................................................................ B. claviformosum Quate, 1996

Analysis of DNA barcodes

All sequenced specimens form well-supported clusters (BS = 100) in the NJ tree ( Fig. 25 View Fig ), matching morphological identifications. The maximum intraspecific uncorrected pairwise distance for the partial COI sequences of B. amazonensis were 0.32%, similarly, specimens of B. claviformosum had a maximum uncorrected pairwise distance of 0.16%, specimens of B. palpiculum had a maximum uncorrected pairwise distance 0.92%, and specimens of B. septenacula sp. nov. had a maximum uncorrected pairwise distance 0.45%. The interspecific uncorrected pairwise distance ranged from 16.62 to 19.51% between all the sequenced taxa.

Genus distribution model

Species distribution models calculated by MaxEnt show good model quality according to evaluation measures. MaxEnt shows comprehensible results according to our knowledge on climatic preferences of species inside the genus Bryopharsos . Of the 19 WorldClim variables, 13 were correlated, while only 6 were significant for the model construction. The variable that contributed most to the construction of this model was bio10 ʻMean Temperature of Warmest Quarterʼ (73.1%), the second most important variable was bio11 ʻMean Temperature of Coldest Quarterʼ (8.9%), meaning that temperature significantly conditions the distribution of this genus ( Fig. 26 View Fig ).

According to the predictions, under current climatic conditions, the moth fly genus Bryopharsos is potentially established in much of the sub-humid to humid tropics and subtropics of America ( Figs 1 View Fig , 26 View Fig ). The modelled suitability of the climate for Bryopharsos aligns well with its known occurrences in tropical America between 23° N and 25° S. Therefore, areas with highly suitable climate conditions for Bryopharsos species include the Caribbean islands, most of Central America, the state of Tabasco in Mexico southward, and the Chocó-Darién biodiversity hotspot in Panama, western Colombia, and Ecuador. On the other hand, the model predicts a continuous distribution through the Andes mountain range in Ecuador and Colombia, to the Amazonian lowland forest region, from western Amazonia to central and northern Amazonia through Colombia, Ecuador, Venezuela, Peru, Amazonas, Acre and Rondonia states ( Brazil) and northern Bolivia. A discontinuous distribution is observed in Amazonian forest areas such as Guyanas and Pará. In addition, the model predicts moderately suitable conditions through the Atlantic forest patches along the coasts and in southern Brazil.

Kingdom

Animalia

Phylum

Arthropoda

Class

Insecta

Order

Diptera

Family

Psychodidae

Genus

Bryopharsos

Loc

Bryopharsos uncinatum Bravo & Araújo, 2019

Jaume-Schinkel, Santiago, Kilian, Isabel C., Pazmiño-Palomino, Alex & Mengual, Ximo 2025
2025
Loc

Bryopharsos uncinatum Bravo & Araújo, 2019: 365

Bravo F. & Araujo M. X. 2019: 365
2019
Darwin Core Archive (for parent article) View in SIBiLS Plain XML RDF