Ischnocolus valentinus ( Dufour, 1820 )
publication ID |
https://doi.org/10.5281/zenodo.2525281 |
publication LSID |
lsid:zoobank.org:pub:94647F4D-E299-4B03-89C8-7F7617A050EA |
persistent identifier |
https://treatment.plazi.org/id/03EED15D-B309-B617-FE08-FF39FE01FDE6 |
treatment provided by |
Felipe |
scientific name |
Ischnocolus valentinus ( Dufour, 1820 ) |
status |
|
Ischnocolus valentinus ( Dufour, 1820) View in CoL
( Figs 18–20) Mygale valentina Dufour, 1820: 5 , pl. LXXIII, figs 1, 2 (♂). Ischnocolus valentinus : Ausserer, 1871: 186; Guadanucci & Wendt 2014: 391, fig. 3A–D (♂ ♀). Leptopelma cavicola Simon 1889: 396 , pl. XIII, fig. 3 (♂ ♀, burrow structure), 1909: 8; Reimoser
1919: 7; Roewer 1942: 222; Bonnet 1957: 2395; Benoit 1964: 414, figs 1, 2 (♂ ♀). N. syn. Leptopelma cavicula [lapsus]: McCook 1890: 189, fig. 1 (burrow structure). Nemesia cavicola : Uchman et al. 2018: 69, 73, fig. 1g (burrow structure).
NB: Only sources using the original name, the currently accepted name and the names which fall into the newly established synonymy are listed here. For the full synonymy list refer to WSC (2018).
Material examined: Algeria: 1♂ ”Mecheria – Bou Saada – Metjez” [no other data] ( MNHN 6131 About MNHN ) ; 2♂ same label data ( MNHN 6192 About MNHN ) ; 1♂ 1♀ Daya [no other data, probably collected in 1882–1884 by M.L. Bedel] (syntypes of Leptopelma cavicola Simon, 1889 ) ( MNHN 6130 About MNHN /AR4542) ; 8♂ 30♀ Birin, Oued Sedem & Tlemsen, mid-1880s, E. Simon (syntypes of L. cavicola Simon, 1889 ) ( MNHN 5550 About MNHN / AR4548) . Morocco: 1♂ 1♀ Fez, ii.1868, E. Simon (syntypes of Ischnocolus maroccanus Simon, 1873 ) ( MNHN 1459 About MNHN ) ; 1♂ Tizni, ii.1964, J. Lambert ( MRAC 130699 View Materials ) .
Distribution: Spain, Italy, Morocco, Algeria, Tunisia, Libya ( WSC 2018). According to Guadanucci and Wendt (2014), the range of this species includes also the disputed Western Sahara.
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.