Pterochelus Jousseaume, 1880
publication ID |
https://doi.org/10.17111/FragmPalHung.2019.36.31 |
persistent identifier |
https://treatment.plazi.org/id/0387A34A-FFF8-FFAF-51C8-4F2F025CBA51 |
treatment provided by |
Felipe |
scientific name |
Pterochelus Jousseaume, 1880 |
status |
|
Genus Pterochelus Jousseaume, 1880 View in CoL
Type species: Murex acanthopterus Lamarck, 1816
? Pterochelus contabulatus gantensis ( Szőts, 1953) View in CoL
(Figs 11–16)
v 1953 Murex gántensis (sic.) nov. sp. – SZŐTS, p. 181, pl. 6, figs 3–5 .
v 1974 Murex (Pterynotus) contabulatus gantensis Szőts – STRAUSZ, p. 118, pl. 3, figs 1–2.
2020 Pterochelus contabulatus – DULAI, p. 200, fig. E.
Material – MGSH: E.125 (holotype), E.126 (2), E.5194 (1), E.5207 (1), E.5270 (7), E.5285 (6), E.5514 (2), E.5905 (1); HNHM: M.59.7443 (>70), M.59.7444 (10), M.61.2423 (2), INV 2020.24. (1); Coll. Berta (4) , Coll. Evanics (1) , Coll. Zsoldos (2), Coll. Vicián (1).
Remarks – The “exceptional” similarity between Murex contabulatus Lamarck, 1803 and M. gantensis nov. sp. was already noted by SZŐTS (1953). Later STRAUSZ (1974) revised gantensis , and emended it as a subspecies of? P. contabulatus . Based on morphological differences (the teleoconch whorls of gantensis are more constricted at the base and the spines are slightly more curved than that of contabulatus , see MERLE et al. 2011, pl. 115, figs 5–9) the arrangement suggested by Strausz is accepted herein, and? P. contabulatus gantensis is regarded as a geographic subspecies. “ Murex ” contabulatiformis Schauroth, 1865 from the Italian Eocene is a similar form but differs by more angulate whorls.? P. contabulatus gantensis is widespread and relatively abundant in the HPB.
Distribution – Lutetian–Bartonian, Hungarian Paleogene Basin: Dudar, Gánt, Csákvár, Tés, Balinka, Mesterberek, Neszmély, Tatabánya /Felsőgalla.
HNHM |
Hungarian Natural History Museum (Termeszettudomanyi Muzeum) |
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.